## Referências Bibliográficas

- [1] Billinton, R., Allan, R. N., "Reliability Evaluation of Power Systems", Plenum Publishing, New York, 1984.
- [2] Soares, N. H. M., Sobral, S. C., Morand, S. R., Gomes, P., Sardinha, S., Queiroz, R., "Proposta de Serviços Ancilares para o Sistema Interligado Nacional", VII EDAO, março de 2002.
- [3] Shirmohammadi D., Vojdani, A., "An Overview of Ancillary Services", V SEPOPE, Recife, maio de 1996.
- [4] Alvarado, F. L., "Methods for the Quantification of Ancillary Services in Electric Power Systems", V SEPOPE, outubro de 1996.
- [5] Hao, S., Papalexopoulos, A., "Reactive Power Pricing and Management", IEEE/PES Winter Meeting, Baltimore, janeiro de 1996.
- [6] Siddiqi, S. N., Baughman, M. L., "Reliability Differentiated Pricing of Spinning Reserve", IEEE/PES Summer Meeting, San Francisco, julho de 1994.
- [7] National Grid Company NGC, "The Grid Code Connections Conditions", Inglaterra.
- [8] Compañia Administradora del Mercado Mayorista Eléctrico CAMMESA, "Procedimientos para la Programación de la Operación el Despacho de Cargas y el Cálculo de Precios", Argentina.
- [9] Red Eléctrica de España, "Operación del Sistema de Eléctrico Procedimientos de Operación", Espanha.
- [10] The Independent Electricity Market Operator IMO, "Market Rules for the Ontario Electricity Market", Canadá.
- [11] Agência Nacional de Energia Elétrica, Resolução nº 265, 10 de junho de 2003, Brasil.
- [12] Marcato, A. L. M., "Avaliação dos Requisitos e Comercialização da Reserva de Potência em Sistemas Competitivos", Dissertação de Mestrado, Departamento de Engenharia Elétrica, PUC-Rio, janeiro de 1998.
- [13] Marzano, L. G. B., "Estudo de Alternativas de Partição de Custos de Potência Reativa em Sistemas de Transmissão em Ambientes Competitivos", Dissertação de Mestrado, Departamento de Engenharia Elétrica, PUC-Rio, abril de 1998.
- [14] Lamont, J. W., Fu, J., "Cost Analysis of Reactive Power Support", IEEE Transactions on Power Systems, abril de 1998.
- [15] Cigré, "Methods and Tools for Costing Ancillary Services", SC 38, Advisory Group 05, Task Force 38-05-07, agosto de 1999.
- [16] Silva, E. L., "O Provimento de Potência Reativa como um Serviço Ancilar", XV SNPTEE, outubro de 1999.

- [17] Prada, R. B., Velasco, C. J., Silva, L. X., Vieira, M. A. M., "Serviços Ancilares à Operação de Sistemas Elétricos Relatório I", Departamento de Energia Elétrica, PUC-Rio, setembro de 2000.
- [18] Prada, R. B., Velasco, C. J., Silva, L. X., Vieira, M. A. M., "Serviços Ancilares à Operação de Sistemas Elétricos – Relatório II", Departamento de Energia Elétrica, PUC-Rio, março de 2001.
- [19] Prada, R. B., Velasco, C. J., Silva, L. X., Vieira, "Serviços Ancilares à Operação de Sistemas Elétricos – Relatório V", Departamento de Energia Elétrica, PUC-Rio, dezembro de 2001.
- [20] Vieira, M. A. M, "Alocação do Custo de Capital de Fonte de Potência Reativa", Dissertação de Mestrado, Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, dezembro de 2001.
- [21] Prada, R. B., Velasco, C. J., Silva, L. X., Carvalho, F. G., Nogueira G. A. S., "Serviços Ancilares à Operação de Sistemas Elétricos Relatório I Fase 2", Departamento de Energia Elétrica, PUC-Rio, outubro de 2002.
- [22] Prada, R. B., Velasco, C. J., Silva, L. X., Carvalho, F. G., Nogueira G. A. S., "Serviços Ancilares à Operação de Sistemas Elétricos – Relatório II – Fase 2", Departamento de Energia Elétrica, PUC-Rio, abril de 2003.
- [23] Soares, N. H. M., Sobral, S. C., Morand, S. R., Gomes, P., Sardinha, S., Queiroz, R., "Proposta de Serviços Ancilares para o Sistema Interligado Nacional", VII EDAO, março de 2002.
- [24] Soto, J. R. O., "Alocação de Custos de Novas Fontes de Potência Reativa em Ambientes Competitivos", Estudo Orientado, Departamento de Energia Elétrica, PUC-Rio, dezembro de 2002.
- [25] Nogueira, G. A. S., "Identificação dos Beneficiários e Alocação de Custos de Fontes de Potência Reativa", Dissertação de Mestrado, Departamento de Engenharia Elétrica, PUC-Rio, março de 2003.
- [26] Velasco, C. J., "Metodologia para Cálculo do Valor do Serviço e da Remuneração dos Agentes Fornecedores de Reservas Operativas", Tese de Doutorado, Departamento de Energia Elétrica, PUC-Rio, julho de 2004.
- [27] Ribeiro, P. M., Marzano L. G. B., Soto, J. R. O., Melo, A. C. G., "Methodology for Pricing the Generation Reserve and the Reactive Power Support as Ancillary Services When Provided by Generators", IX SEPOPE, Rio de Janeiro, maio de 2004.
- [28] Barros, J. R. P., "Um Método para Alocação de Custos de Uso do Sistema de Transmissão Baseado em Coalizões e no Valor de Shapley", IX SEPOPE, Rio de Janeiro, maio de 2004.
- [29] Barros, J. R. P., "Usando Técnicas e Algoritmos da Teoria dos Jogos Cooperativos para Repartir Custos de Perdas Ativas na Transmissão – Metodologia e Estudo de Casos", IX SEPOPE, Rio de Janeiro, maio de 2004.
- [30] Faria, E. T., "Aplicação de Teoria dos Jogos à Repartição da Energia Firme de um Sistema Hidrelétrico", Dissertação de Mestrado, Departamento de Energia Elétrica, PUC-Rio, maio de 2004.
- [31] von Neumman, J., Morgenstern, O., "Theory of Games and Economic Behavior", Priceton Press, 1947.

- [32] Young H. P., "Cost Allocation", in Handbook of Game Theory with Economic Applications, Volume 2, eds R. Aumann and S. Hart, North Holland, Elsevier, Amsterdam, 1994.
- [33] Schmeider, D., "The Nucleolus of a Characteristic Function Game", SIAM Journal on Applied Mathematics, 1969.
- [34] Monticelli, A. J., "Fluxo de Carga em Redes de Energia Elétrica", Edgard Blücher, São Paulo, 1983.
- [35] Tinney, W. F., Hart, C. E., "Power Flow Solution by Newton's Method", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-86, 1967.
- [36] Stott, B., "Decoupled Newton Load Flow", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-91, pp. 1955-1959, 1972.
- [37] Stott, B., Alsaç, O., "Fast Decoupled Load Flow", ", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-93, pp. 859-869, 1974.
- [38] Carpentier, J., "Contribution à l'étude du dispatching économique", Bulletin de la Société Française des Electriciens, ser. 8, vol. 3, pp. 431-447, agosto de 1962.
- [39] Dommel, H. W., Tinney, W. F., "Optimal Power Flow Solutions", IEEE Transactions on PAS, Vol. 87, outubro de 1968.
- [40] Carpentier, J., "Differential Injections Method: A General Method for Secure and Optimal Load Flows", Proc PICA, 1973.
- [41] Sun, D. I., Ashley, B. T., Brewer, B. J., Hughes, B. A., Tinney, W. F., "Optimal Power Flow by Newton Approach", IEEE Transactions on PAS, Vol. 103, No 10, outubro de 1984.
- [42] Alsaç, O., Bright, J., Prais, M., Stott, B., "Further Developments in LP-Based Optimal Power Flow", IEEE Transactions on PAS, Vol. 5, 1990.
- [43] Granville, S., "Optimal Reactive Dispatch Though Interior Point Method", IEEE/PES, N° 93, fevereiro de 1993.
- [44] Latorre, M. L., "Aplicação do Método de Pontos Interiores Primal-Dual para a Resolução do Problema de Fluxo de Potência Ótimo", Dissertação de Mestrado, COPPE/UFRJ, 1995.
- [45] Bazaraa, M. S., Shetty, C. M., "Non Linear Programming Theory and Algorithms", John Wiley & Sons, Nova lorque, 1979.
- [46] Billinton, R., Allan, R. N., "Probabilistic Methodologies Used in the Assessment of Power System Reliability Evaluation", 1st PMAPS, Toronto, Canada, 1986.
- [47] Melo, A. C. G., "Avaliação dos Índices de Frequência e Duração no Cálculo da Confiabilidade Composta de Sistemas de Geração e Transmissão de Grande Porte", Tese de Doutorado, Departamento de Engenharia Elétrica, PUC-Rio, outubro de 1990.
- [48] CEPEL, "Sistema Computacional NH2 para Análise Probabilística e Avaliação de Confiabilidade em Sistemas de Grande Porte", Manual de Metodologia, Versão 5.0, 1998.
- [49] BEUNE, R., MODGRIDE, L., "Contracting for Ancillary Generation Services", Cigré Joint Working Group, 2000.
- [50] CEPEL, "Sistema Computacional FLUPOT Programa de Fluxo de Potência Ótimo", Manual do Usuário, Versão 5.1, Novembro de 2000.

- [51] Faro, C., "Matemática Financeira", Editora APEC, 1969.
- [52] IEEE RTS Task Force of the AMP Subcommittee, "IEEE Reliability Test System", IEEE PAS, Vol. 98, No 6, 1979.
- [53] Gomes, P., Schilling, M. Th., "Custo de Interrupção: Conceituação, Metodologia de Avaliação, Valores Existentes e Aplicações", XIV SNPTEE, 1997.
- [54] Larson, H. J., "Introduction to Probability Theory and Statistical Inference", Wiley series in probability and mathematical statistics, Third edition.

## Apêndice A - Método de Aumann-Shapley

Para demonstrar a formulação matemática do método de Aumann-Shapley, considere dois agentes A e B, por exemplo, com montantes  $b_A$  e  $b_B$  de utilização de um determinado serviço [13].

O método de Aumann-Shapley baseia-se na premissa de que cada agente deve repartido em diversos sub-agentes com mesmo montante de utilização do serviço (Δ). Assim, considere que os agentes A e B sejam repartidos em N1 e N2 sub-agentes distintos, respectivamente:

Definindo N =  $N_1$  +  $N_2$  como o número total de sub-agentes obtidos, estes poderiam ser combinados de  $\binom{N}{N_1}$  maneiras possíveis. Cada uma dessas combinações pode ser interpretada como um "caminho" no espaço bidimensional, desde o ponto anterior à entrada dos agentes até o ponto onde os dois agentes A e B já entraram. A Figura A-1 ilustra o caminho ABA, considerando os sub-agentes  $N_1$  = 2 e  $N_2$  = 1.

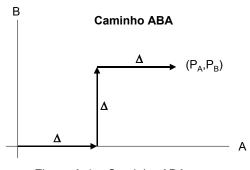



Figura A-1 – Caminho ABA

Para cada caminho  $\alpha$  obtido a partir das combinações dos sub-agentes, um custo marginal médio é obtido. Por exemplo, o custo marginal médio para o caminho mostrado na Figura A-1 seria:

$$\widetilde{\pi}_{A}^{\alpha} = \frac{\left(\frac{\partial c}{\partial x}(\Delta, 0) \cdot \Delta + \frac{\partial c}{\partial x}(2\Delta, \Delta) \cdot \Delta\right)}{P_{A}} \tag{A.1}$$

$$\widetilde{\pi}_{B}^{\alpha} = \frac{\left(\frac{\partial \mathbf{c}}{\partial \mathbf{y}}(\Delta, \Delta) \cdot \Delta\right)}{\mathsf{P}_{B}} \tag{A.2}$$

Os coeficientes finais são obtidos como a média dos custos marginais médios de todos os caminhos:

$$\widetilde{\pi}_{A} = \frac{\sum_{\alpha} \widetilde{\pi}_{A}^{\alpha}}{N_{\alpha}} \tag{A.3}$$

$$\widetilde{\pi}_{\mathsf{B}} = \frac{\sum_{\alpha} \widetilde{\pi}_{\mathsf{B}}^{\alpha}}{\mathsf{N}_{\alpha}} \tag{A.4}$$

onde 
$$N_{\alpha} = \begin{pmatrix} N \\ N_1 \end{pmatrix}$$

Observa-se que (A.3) e (A.4) podem ser vistos como o valor esperado de uma variável aleatória em função de uma distribuição discreta. Além disso, quando o montante de serviço dos sub-agentes tende a zero ( $\Delta \to 0$ ), o número de sub-agentes tende ao infinito (N,N<sub>1</sub>,N<sub>2</sub>  $\to \infty$ ).

Para obter o limite deve-se computar  $\widetilde{\pi}_A$  e  $\widetilde{\pi}_B$  em uma forma não sequencial. Seleciona-se um ponto no espaço bidimensional  $(\tau_A, \tau_B)$ , tal que  $0 \le \tau_A \le P_A$  e  $0 \le \tau_B \le P_B$ . Definindo  $k_1 = \tau_A/\Delta$  e  $k_2 = \tau_B/\Delta$ , o número de caminhos que passam por  $(k_1\Delta, k_2\Delta)$  e  $((k_1+1)\Delta, k_2\Delta)$  seria:

$${\binom{k_1 + k_2}{k_1}} \cdot {\binom{N - (k_1 + k_2) - 1}{N_1 - k_1 - 1}} = N(k_1, k_2) \cdot \frac{N_1 - k_1}{N - (k_1 + k_2)}$$
(A.5)

onde:

$$N(k_1, k_2) = {k_1 + k_2 \choose k_1} \cdot {N - (k_1 + k_2) \choose N_1 - k_1}$$
(A.6)

Agora  $\tilde{\pi}_A$  pode ser rescrito da seguinte forma:

$$\widetilde{\pi}_{A} = \frac{1}{P_{A}} \cdot \sum_{(k_{1},k_{2})} \frac{N_{1} - k_{1}}{N - (k_{1} + k_{2})} \cdot \frac{N(k_{1},k_{2})}{N_{\alpha}} \cdot \frac{\partial c}{\partial x} (k_{1}\Delta,k_{2}\Delta)\Delta \tag{A.7}$$

ou, fazendo  $k = k_1 + k_2$ :

$$\widetilde{\pi}_{A} = \frac{1}{P_{A}} \cdot \sum_{k=1}^{N} \sum_{k_{1}=1}^{k} \frac{N_{1} - k_{1}}{N - k} \cdot \frac{N(k_{1}, k - k_{1})}{N_{\alpha}} \cdot \frac{\partial c}{\partial x} (k_{1} \Delta, (k - k_{1}) \Delta) \Delta \tag{A.8}$$

Verifica-se que

$$\frac{N(k_1, k - k_1)}{N_{\alpha}} = \frac{\binom{k}{k_1} \cdot \binom{N - k}{N_1 - k_1}}{\binom{N}{N_1}} = \frac{\binom{N_1}{k_1} \cdot \binom{N - N_1}{k - k_1}}{\binom{N}{k}}$$
(A.9)

é a distribuição hipergeométrica com parâmetros (N, N<sub>1</sub>, k). Fazendo p =  $N_1/N = P_A/(P_A+P_B)$ , sabe-se que quando  $N_1,N_1,N_2 \rightarrow \infty$ , mantendo-se p constante, a distribuição hipergeométrica se aproxima da distribuição binomial com parâmetros (k, p) [54].

Como:

$$\frac{N_1-k_1}{N-k} \to \frac{N_1}{N}, \qquad \quad \text{quando } N_1, N \to \infty$$

Então:

$$\widetilde{\pi}_{A} = \frac{1}{P_{A}} \cdot \frac{N_{1}}{N} \cdot \sum_{k=1}^{N} \cdot \sum_{k_{1}=1}^{k} \binom{k}{k_{1}} \cdot p^{k_{1}} \cdot (1-p)^{k-k_{1}} \cdot \frac{\partial c}{\partial x} (k_{1}\Delta, (k-k_{1})\Delta)\Delta$$
(A.10)

A partir da definição de k, k<sub>1</sub>, k<sub>2</sub>:

$$\begin{split} &\sum_{k_1=1}^k \binom{k}{k_1} \cdot p^{k_1} \cdot (1-p)^{k-k_1} \cdot \frac{\partial c}{\partial x} (k_1 \Delta, (k-k_1) \Delta) = \\ &= \sum_{k_1=1}^k \binom{k}{k_1} \cdot p^{k_1} \cdot (1-p)^{k-k_1} \cdot \frac{\partial c}{\partial x} (k_1 \frac{\tau}{k}, (k-k_1) \frac{\tau}{k}) = \\ &= E_{S_k} \left[ \frac{\partial c}{\partial x} \left( \frac{S_K}{k} \tau, (1-\frac{S_k}{k}) \tau \right) \right] \end{split} \tag{A.11}$$

onde:

$$\tau = \tau_A + \tau_B$$

S<sub>k</sub> soma de k variáveis aleatórias independentes com função de distribuição de Bernoulli, probabilidade de sucesso p

E<sub>S<sub>k</sub></sub>[.] valor esperado em relação a variável S<sub>k</sub>

Da lei dos grandes números [54]:

$$\frac{S_k}{k} \rightarrow p$$
, com probabilidade 1 (A.12)

Então, da continuidade de  $\frac{\partial c}{\partial x}$ , quando k  $\rightarrow \infty$  :

$$\mathsf{E}_{\mathsf{S}_k} \left[ \frac{\partial c}{\partial x} \left( \frac{\mathsf{S}_K}{k} \, \tau, (1 - \frac{\mathsf{S}_k}{k}) \, \tau \right) \right] \! \to \! \frac{\partial c}{\partial x} \! \left( \! p \tau, (1 - p) \tau \right) \! = \! \frac{\partial c}{\partial x} \! \left( \! k p \Delta, (1 - p) k \Delta \right) \tag{A.13}$$

Com isto:

$$\widetilde{\pi}_{A} = \frac{1}{P_{A}} \cdot \frac{N_{1}}{N} \cdot \sum_{k=1}^{N} \frac{\partial c}{\partial x} (kp\Delta, k(1-p)\Delta)\Delta$$
(A.14)

Como  $\Delta = P_A / N_1$ , então:

$$\widetilde{\pi}_{A} = \frac{1}{N} \cdot \sum_{k=1}^{N} \frac{\partial c}{\partial x} \left( k \frac{P_{A}}{N}, k \frac{P_{B}}{N} \right)$$
(A.15)

Finalmente, como N  $\rightarrow \infty$ :

$$\widetilde{\pi}_{A} = \int_{t=0}^{1} \frac{\partial c}{\partial x} (tP_{A}, tP_{B}) dt$$
 (A.16)

Da mesma forma, para o agente B:

$$\widetilde{\pi}_{B} = \int_{t=0}^{1} \frac{\partial c}{\partial y} (tP_{A}, tP_{B}) dt$$
 (A.17)

Onde  $\widetilde{\pi}_A$  e  $\widetilde{\pi}_B$  são chamados de custos unitários de Aumann-Shapley para os agentes A e B, respectivamente. Eles correspondem à média dos custos marginais, quando os montantes de utilização do serviço crescem uniformemente de zero até seus valores correntes.

Generalizando para n agentes, o custo que cabe a cada um utilizando-se a metodologia de Aumann-Shapley seria:

$$\mathbf{x}_{i} = \mathbf{b}_{i} \cdot \widetilde{\boldsymbol{\pi}}_{i} \tag{A.18}$$

onde:

$$\widetilde{\pi}_{i} = \int_{t=0}^{1} \frac{\partial c(tb)}{\partial b_{i}} dt$$
  $i = 1, 2, ..., n$ 

x<sub>i</sub> montante que cabe ao agente i

b<sub>i</sub> montante de serviço utilizado do agente i

 $\tilde{\pi}_i$  custo unitário de Aumann-Shapley para o agente i

## 10 Apêndice B – Dados de Entrada para o Sistema-Exemplo

| Num.<br>Barra | Tipo | Módulo<br>Tensão<br>(p.u.) |      | Geração<br>Ativa<br>(MW) | Geração<br>Reativa<br>(MVAr) | Geração<br>Reativa<br>Mínima | Geração<br>Reativa<br>Máxima | Carga<br>Ativa<br>(MW) | Carga<br>Reativa<br>(MVAr) | Capacitor/<br>Reator<br>(MVAr) | Num.<br>Área |
|---------------|------|----------------------------|------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------|----------------------------|--------------------------------|--------------|
| 1             | 2    | 1,020                      | 0,00 | 1010,0                   | 100,0                        | -100,0                       | 100,0                        | 0,0                    | 0,0                        | 0,0                            | 1            |
| 2             | 0    | 1,000                      | 0,00 | 0,0                      | 0,0                          | 0,0                          | 0,0                          | 700,0                  | 100,0                      | 0,0                            | 1            |
| 3             | 0    | 1,000                      | 0,00 | 0,0                      | 0,0                          | 0,0                          | 0,0                          | 350,0                  | 250,0                      | 0,0                            | 1            |
| 4             | 1    | 0,980                      | 0,00 | 700,0                    | 200,0                        | -200,0                       | 200,0                        | 0,0                    | 0,0                        | 0,0                            | 1            |
| 5             | 1    | 1,025                      | 0,00 | 200,0                    | 350,0                        | -350,0                       | 350,0                        | 100,0                  | 50,0                       | 0,0                            | 1            |

Tabela A-1 – Dados de Barras AC para o Sistema-Exemplo

Tipos de barras AC: 0 – Barra PQ

1 – Barra PV

2 - Barra de referência

| Barra<br>DE | Barra<br>PARA |      | Reatância<br>(%) | Susceptância<br>(MVAr) | TAP de<br>Transformador<br>(p.u.) | TAP<br>Min<br>(p.u.) | Max  | Capacidade<br>Normal<br>(MVAr) | Capacidade<br>Emergência<br>(MVAr) |
|-------------|---------------|------|------------------|------------------------|-----------------------------------|----------------------|------|--------------------------------|------------------------------------|
| 1           | 2             | 1.00 | 3.00             | 6.00                   | 0.00                              | 0.00                 | 0.00 | 700.0                          | 700.0                              |
| 1           | 3             | 4.00 | 12.00            | 5.00                   | 0.00                              | 0.00                 | 0.00 | 200.0                          | 200.0                              |
| 3           | 2             | 3.00 | 9.00             | 4.00                   | 0.00                              | 0.00                 | 0.00 | 100.0                          | 100.0                              |
| 4           | 2             | 3.00 | 9.00             | 4.00                   | 0.00                              | 0.00                 | 0.00 | 200.0                          | 200.0                              |
| 2           | 5             | 2.00 | 6.00             | 3.00                   | 0.00                              | 0.00                 | 0.00 | 200.0                          | 200.0                              |
| 4           | 3             | 0.50 | 1.50             | 2.00                   | 0.00                              | 0.00                 | 0.00 | 600.0                          | 600.0                              |
| 5           | 4             | 4.00 | 12.00            | 5.00                   | 0.00                              | 0.00                 | 0.00 | 50.0                           | 50.0                               |

Tabela A-2 – Dados de Circuitos para o Sistema-Exemplo

| Barra<br>DE | Barra<br>PARA | Taxa de Falha<br>(falhas/ano) | Tempo Médio de<br>Reparo (horas) | Taxa de Indisponibilidade<br>Forçada – TIF |
|-------------|---------------|-------------------------------|----------------------------------|--------------------------------------------|
| 1           | 2             | 0,24                          | 16,0                             | 0,0004                                     |
| 1           | 3             | 0,51                          | 10,0                             | 0,0006                                     |
| 3           | 2             | 0,39                          | 10,0                             | 0,0004                                     |
| 4           | 2             | 0,39                          | 10,0                             | 0,0004                                     |
| 2           | 5             | 0,48                          | 10,0                             | 0,0005                                     |
| 4           | 3             | 0,38                          | 10,0                             | 0,0004                                     |
| 5           | 4             | 0,02                          | 768,0                            | 0,0018                                     |

Tabela A-3 – Dados Estocásticos de Circuitos para o Sistema-Exemplo

Onde: TIF = 
$$\frac{\text{taxa de falha}}{\text{taxa de falha} + \frac{8.760\text{h}}{\text{tempo médio de reparo}}}$$

| Num. da<br>Usina | Conectada à<br>Barra | Nome da<br>Usina | Num.<br>Unidades<br>Geradoras | Geração<br>Ativa Min.<br>(MW) | Geração<br>Ativa Max.<br>(MW) | Geração<br>Reativa Min.<br>(MVAr) | Geração<br>Reativa Max.<br>(MVAr) |
|------------------|----------------------|------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------|
| 1                | 1                    | Usina1           | 1                             | 0,0                           | 1010,0                        | -100,0                            | 100,0                             |
| 2                | 4                    | Usina4           | 1                             | 0,0                           | 700,0                         | -200,0                            | 200,0                             |
| 3                | 5                    | Usina5           | 1                             | 0,0                           | 200,0                         | -350,0                            | 350,0                             |

Tabela A-4 – Dados de Usinas para o Sistema-Exemplo

| Num. da<br>Usina | Nome da<br>Usina | Taxa de Falha<br>(falhas/ano) | Tempo Médio de<br>Reparo (horas) | Taxa de Indisponibilidade<br>Forçada (TIF) |
|------------------|------------------|-------------------------------|----------------------------------|--------------------------------------------|
| 1                | Usina1           | 2,98                          | 60,0                             | 0,02                                       |
| 2                | Usina4           | 19,47                         | 50,0                             | 0,01                                       |
| 3                | Usina5           | 19,47                         | 50,0                             | 0,01                                       |

Tabela A-5 – Dados de Estocásticos de Usinas para o Sistema-Exemplo

| Condição de<br>Operação | Limite Mínimo<br>(p.u.) | Limite Máximo<br>(p.u.) |  |  |
|-------------------------|-------------------------|-------------------------|--|--|
| Normal                  | 0,95                    | 1,05                    |  |  |
| Contingência            | 0,95                    | 1,05                    |  |  |

Tabela A-6 – Limites de Tensão para o Sistema Exemplo

11 Apêndice C – Resultados Numéricos para a Metodologia de Precificação do Serviço Ancilar de Suporte de Potência Reativa

| Gerador | Valor Unitário<br>(\$/MVAr) |          | Remuneração | Gerador | Valor Unitário<br>(\$/MVAr) |          | Remuneração |  |
|---------|-----------------------------|----------|-------------|---------|-----------------------------|----------|-------------|--|
|         | Inferior                    | Superior | (\$/ano)    |         | Inferior                    | Superior | (\$/ano)    |  |
| 1       | 0,0000                      | -0,4952  | 1025,10     | 16      | 0,0000                      | -0,4004  | 961,05      |  |
| 2       | 0,0000                      | -0,4994  | 898,95      | 18      | 0,0000                      | -0,3226  | 1935,30     |  |
| 7       | 0,0000                      | -0,2280  | 820,65      | 21      | 0,0000                      | -0,3101  | 1860,90     |  |
| 13      | 0,0000                      | -0,4851  | 2328,30     | 22      | 0,0000                      | -0,1110  | 215,25      |  |
| 14      | 0,0000                      | -0,4554  | 1366,20     | 23      | 0,0000                      | -0,4211  | 3410,85     |  |
| 15      | 0,0000                      | -0,3912  | 1150,05     |         |                             |          |             |  |

Tabela B-1 – Remuneração dos Geradores que Provêem o Serviço Ancilar de Suporte de Potência Reativa – Sistema IEEE-RTS

| Gerador |          | Jnitário<br>IVAr) | Remuneração | Gerador |          | Jnitário<br>VAr) | Remuneração |
|---------|----------|-------------------|-------------|---------|----------|------------------|-------------|
|         | Inferior | Superior          | (\$/ano)    |         | Inferior | Superior         | (\$/ano)    |
| 4       | 0,000    | -0,191            | 716,40      | 1821    | 0,040    | -0,003           | 6,75        |
| 5       | 0,005    | -0,185            | 93,00       | 1822    | 0,040    | -0,003           | 6,75        |
| 6       | 0,007    | -0,054            | 173,25      | 1823    | 0,040    | -0,003           | 6,75        |
| 7       | 0,000    | -0,148            | 44,25       | 1835    | 0,030    | -0,002           | 3,00        |
| 8       | 0,000    | -0,153            | 137,25      | 1842    | 0,000    | -0,013           | 1,35        |
| 11      | 0,000    | -0,214            | 1025,55     | 1843    | 0,000    | -0,013           | 1,35        |
| 12      | 0,000    | -0,248            | 558,45      | 1850    | 0,118    | 0,000            | 53,25       |
| 13      | 0,000    | -0,223            | 1674,90     | 1898    | 0,000    | -0,015           | 2,70        |
| 14      | 0,000    | -0,182            | 1202,85     | 1907    | 0,000    | -0,266           | 48,00       |
| 16      | 0,000    | -0,312            | 8971,95     | 1956    | 0,000    | -0,259           | 273,15      |
| 17      | 0,000    | -0,101            | 957,75      | 1973    | 0,000    | -0,174           | 783,00      |
| 21      | 0,003    | -0,072            | 560,85      | 2019    | 0,000    | -0,409           | 232,80      |
| 23      | 0,000    | -0,206            | 262,35      | 2029    | 0,000    | -0,816           | 318,15      |
| 24      | 0,000    | -0,188            | 155,40      | 2046    | 0,000    | -0,181           | 853,20      |
| 25      | 0,000    | -0,153            | 161,10      | 2056    | 0,000    | -0,827           | 62,10       |
| 28      | 0,030    | -0,006            | 21,60       | 2066    | 0,000    | -0,146           | 96,30       |
| 30      | 0,001    | -0,032            | 582,60      | 2067    | 0,000    | -0,146           | 96,30       |
| 33      | 0,007    | -0,004            | 7,05        | 2094    | 0,000    | -0,136           | 396,75      |
| 36      | 0,000    | -0,121            | 596,40      | 2095    | 0,000    | -0,136           | 396,75      |
| 37      | 0,000    | -0,148            | 44,25       | 2096    | 0,000    | -0,136           | 396,75      |
| 42      | 0,003    | -0,037            | 106,80      | 2097    | 0,000    | -0,136           | 396,75      |
| 45      | 0,000    | -0,200            | 2332,65     | 2101    | 0,000    | -0,351           | 126,45      |
| 176     | 0,001    | -0,080            | 63,30       | 2102    | 0,000    | -0,351           | 126,45      |
| 179     | 0,170    | -0,001            | 799,35      | 2103    | 0,000    | -0,351           | 126,45      |
| 185     | 0,000    | -0,028            | 76,65       | 2104    | 0,000    | -0,351           | 126,45      |
| 189     | 0,174    | 0,000             | 1408,05     | 2105    | 0,000    | -0,351           | 126,45      |

Apêndice C – Resultados Numéricos para a Metodologia de Precificação do Serviço 142 Ancilar de Suporte de Potência Reativa

| 190        | 0,026 | -0,003 | 79,50            | 2106                                  | 0,000 | -0,351 | 126,45         |
|------------|-------|--------|------------------|---------------------------------------|-------|--------|----------------|
| 191        | 0,214 | 0,000  | 3398,25          | 2145                                  | 0,009 | -0,247 | 115,05         |
| 192        | 0,200 | 0,000  | 1761,15          | 2152                                  | 0,005 | -0,119 | 34,50          |
| 193        | 0,006 | -0,009 | 53,40            | 2174                                  | 0,000 | -0,347 | 270,75         |
| 194        | 0,209 | 0,000  | 781,80           | 2176                                  | 0,000 | -0,307 | 437,10         |
| 196        | 0,193 | 0,000  | 694,20           | 2183                                  | 0,000 | -0,185 | 125,10         |
| 197        | 0,199 | 0,000  | 1205,85          | 2184                                  | 0,000 | -0,185 | 125,10         |
| 224        | 0,074 | 0,000  | 20,10            | 2199                                  | 0,000 | -0,492 | 140,25         |
| 225        | 0,000 | -0,021 | 7,65             | 2239                                  | 0,000 | -0,466 | 1398,00        |
| 229        | 0,001 | -0,025 | 87,15            | 2245                                  | 0,000 | -0,282 | 76,20          |
| 265        | 0,030 | 0,000  | 15,90            | 2266                                  | 0,014 | -0,046 | 4,35           |
| 290        | 0,000 | -0,445 | 941,40           | 2276                                  | 0,239 | -0,033 | 29,10          |
| 291        | 0,000 | -0,224 | 181,65           | 2294                                  | 0,298 | -0,002 | 126,15         |
| 292        | 0,126 | -0,002 | 187,50           | 2340                                  | 0,000 | -0,120 | 13,50          |
| 293        | 0,000 | -0,546 | 983,25           | 2349                                  | 0,172 | -0,154 | 75,45          |
| 329        | 0,027 | -0,013 | 45,30            | 2357                                  | 0,000 | -0,986 | 48,75          |
| 330        | 0,027 | -0,013 | 45,30            | 2539                                  | 1,001 | 0,000  | 49,50          |
| 370        | 0,004 | -0,008 | 3,00             | 2551                                  | 0,381 | 0,000  | 68,55          |
| 376        | 0,002 | -0,021 | 18,00            | 2560                                  | 0,625 | 0,000  | 103,05         |
| 403        | 0,000 | -0,031 | 7,50             | 2569                                  | 0,312 | 0,000  | 1924,80        |
| 404        | 0,000 | -0,157 | 132,00           | 2573                                  | 0,028 | 0,000  | 25,05          |
| 405        | 0,000 | -0,045 | 34,05            | 2578                                  | 0,499 | 0,000  | 239,40         |
| 406        | 0,000 | -0,043 | 44,40            | 2661                                  | 0,006 | 0,000  | 896,85         |
| 407        | 0,000 | -0,151 | 155,85           | 2673                                  | 0,240 | 0,000  | 2157,15        |
|            |       |        |                  |                                       |       |        |                |
| 851        | 0,000 | -0,801 | 552,60           | 2674                                  | 0,305 | 0,000  | 1520,85        |
| 853        | 0,000 | -0,519 | 1362,00          | 2695                                  | 0,424 | 0,000  | 190,65         |
| 856        | 0,000 | -0,112 | 621,00           | 2702                                  | 0,000 | -0,172 | 92,85          |
| 877<br>878 | 0,000 | -0,225 | 253,50           | 2704<br>2705                          | 0,000 | -0,112 | 63,60<br>70,50 |
| 1028       | 0,000 | -0,111 | 133,05<br>284,40 | 2705                                  | 0,000 | -0,086 | 101,55         |
| 1028       |       | -0,253 | -                |                                       | -     | -0,056 | •              |
|            | 0,000 | -0,252 | 1059,30          | 2707                                  | 0,000 | -0,050 | 235,95         |
| 1036       | 0,000 | -0,246 | 369,45           | 2710                                  | 0,000 | -0,316 | 350,25         |
| 1044       | 0,000 | -0,153 | 39,45            | 2712                                  | 0,137 | 0,000  | 478,80         |
| 1056       | 0,000 | -0,413 | 433,65           | 2713                                  | 0,136 | -0,001 | 238,20         |
| 1143       | 0,000 | -0,283 | 848,40           | 2714                                  | 0,293 | 0,000  | 3414,75        |
| 1196       | 0,000 | -0,176 | 264,30           | 2715                                  | 0,427 | 0,000  | 5128,65        |
| 1203       | 0,000 | 0,000  | 7,80             | 2815                                  | 0,000 | -0,354 | 318,75         |
| 1240       | 0,000 | -0,295 | 442,95           | 2835                                  | 0,050 | -0,060 | 42,15          |
| 1346       | 0,000 | -0,007 | 3,30             | 2859                                  | 0,057 | 0,000  | 5,10           |
| 1446       | 0,000 | -0,008 | 8,55             | 2896                                  | 0,283 | 0,000  | 190,95         |
| 1467       | 0,000 | -0,232 | 139,35           | 2933                                  | 0,000 | 0,000  | 6,00           |
| 1484       | 0,001 | -0,003 | 7,80             | 2948                                  | 0,000 | -0,028 | 4,20           |
| 1491       | 0,015 | 0,000  | 0,45             | 2993                                  | 0,000 | -0,003 | 439,65         |
| 1493       | 0,000 | 0,000  | 0,00             | 3181                                  | 0,000 | -0,200 | 1249,35        |
| 1495       | 0,000 | 0,000  | 0,00             | 3182                                  | 0,000 | -0,225 | 620,85         |
| 1498       | 0,000 | -0,017 | 1,80             | 3183                                  | 0,000 | -0,061 | 655,20         |
| 1518       | 0,000 | -0,062 | 4,65             | 3184                                  | 0,000 | -0,188 | 495,75         |
| 1523       | 0,017 | 0,000  | 5,70             | 3185                                  | 0,000 | -0,220 | 622,35         |
| 1532       | 0,007 | -0,002 | 4,80             | 3190                                  | 0,007 | 0,000  | 8,70           |
| 1538       | 0,000 | 0,000  | 0,00             | 3192                                  | 0,001 | -0,195 | 141,00         |
| 1560       | 0,035 | 0,000  | 8,40             | 3194                                  | 0,011 | 0,000  | 3,90           |
| 1561       | 0,010 | -0,006 | 8,10             | 3196                                  | 0,000 | -0,187 | 84,00          |
| 1562       | 0,022 | -0,001 | 17,40            | 3202                                  | 0,000 | -0,257 | 81,15          |
|            |       |        |                  | · · · · · · · · · · · · · · · · · · · |       |        |                |

Apêndice C – Resultados Numéricos para a Metodologia de Precificação do Serviço 143 Ancilar de Suporte de Potência Reativa

| 1563 | 0,009 | -0,012 | 32,25  | 3205 | 0,000 | -0,087 | 13,05  |
|------|-------|--------|--------|------|-------|--------|--------|
| 1565 | 0,009 | -0,013 | 23,85  | 3206 | 0,001 | -0,164 | 172,50 |
| 1670 | 0,000 | -0,519 | 85,50  | 3207 | 0,000 | -0,177 | 375,15 |
| 1676 | 0,000 | -0,406 | 36,60  | 3215 | 0,000 | -0,298 | 134,10 |
| 1677 | 0,000 | -0,178 | 8,10   | 3220 | 0,000 | -0,006 | 15,00  |
| 1686 | 0,000 | -0,137 | 6,15   | 3221 | 0,210 | 0,000  | 113,70 |
| 1689 | 0,000 | -0,364 | 75,30  | 3223 | 0,000 | -0,243 | 193,05 |
| 1694 | 0,000 | -0,422 | 107,55 | 3266 | 0,047 | 0,000  | 31,35  |
| 1697 | 0,000 | -0,344 | 26,85  | 3360 | 0,026 | 0,000  | 5,85   |
| 1802 | 0,032 | 0,000  | 3,30   |      |       |        |        |

Tabela B-2 – Remuneração dos Geradores que Provêem o Serviço Ancilar de Suporte de Potência Reativa - Sistema Sul-Sudeste

## 12 Apêndice D – Resultados Numéricos para a Metodologia de Precificação do Serviço Ancilar de Reserva de Potência

| Gerador | Valor Unitário<br>(\$/MW) | Remuneração<br>(\$/ano) | Gerador | Valor Unitário<br>(\$/MW) | Remuneração<br>(\$/ano) |
|---------|---------------------------|-------------------------|---------|---------------------------|-------------------------|
| 1       | 0,567                     | 143.144,75              | 16      | 0,508                     | 137.836,34              |
| 2       | 0,568                     | 143.200,75              | 18      | 0,479                     | 335.905,25              |
| 7       | 0,564                     | 197.714,33              | 21      | 0,477                     | 334.293,22              |
| 13      | 0,543                     | 374.959,25              | 22      | 0,480                     | 168.161,64              |
| 15      | 0,507                     | 169.714,41              | 23      | 0,508                     | 517.932,41              |

Tabela C-1 –Remuneração dos Geradores que Provêem o Serviço Ancilar de Reserva de Potência – Sistema IEEE-RTS

| Gerador | Valor Unitário<br>(\$/MW) | Remuneração<br>(\$/ano) | Gerador | Valor Unitário<br>(\$/MW) | Remuneração<br>(\$/ano) |
|---------|---------------------------|-------------------------|---------|---------------------------|-------------------------|
| 4       | 0,049                     | 28.165,17               | 1315    | 0,246                     | 3.884,68                |
| 11      | 0,039                     | 37.417,63               | 1317    | 0,272                     | 1.381,13                |
| 12      | 0,145                     | 28.156,24               | 1341    | 0,274                     | 7.979,85                |
| 13      | 0,046                     | 53.298,86               | 1382    | 0,382                     | 16.544,63               |
| 16      | 0,019                     | 110.377,91              | 1383    | 0,384                     | 16.633,95               |
| 17      | 0,026                     | 52.664,16               | 1384    | 0,383                     | 16.628,81               |
| 21      | 0,029                     | 38.030,30               | 1394    | 0,345                     | 4.536,76                |
| 23      | 0,041                     | 11.512,02               | 1401    | 0,320                     | 4.202,74                |
| 24      | 0,044                     | 6.921,21                | 1402    | 0,321                     | 4.216,77                |
| 25      | 0,034                     | 9.851,01                | 1409    | 0,287                     | 37.729,54               |
| 28      | 0,221                     | 8.715,60                | 1425    | 0,357                     | 1.063,43                |
| 40      | 0,027                     | 8.801,21                | 1433    | 0,335                     | 1.172,88                |
| 43      | 0,025                     | 27.820,92               | 1437    | 0,322                     | 1.836,10                |
| 45      | 0,025                     | 10.141,39               | 1449    | 0,320                     | 6.984,73                |
| 50      | 0,028                     | 60.745,13               | 1469    | 0,164                     | 33.714,13               |
| 156     | 0,055                     | 271.600,63              | 1473    | 0,091                     | 55.844,19               |
| 778     | 0,168                     | 19.471,67               | 1475    | 0,232                     | 8.531,91                |
| 780     | 0,164                     | 54.538,54               | 1477    | 0,321                     | 12.657,64               |
| 786     | 0,168                     | 14.701,65               | 2348    | 0,251                     | 12.114,94               |
| 794     | 0,095                     | 4.669,85                | 2349    | 0,316                     | 719,06                  |
| 802     | 0,193                     | 31.395,26               | 2351    | 0,348                     | 426,85                  |
| 1313    | 0,276                     | 1.161,67                |         |                           |                         |

Tabela C2 – Remuneração dos Geradores que Provêem o Serviço Ancilar

de Reserva de Potência - Sistema Sul-Sudeste